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Introduction

A. Nagarkar

Measured the ZZ — (10~ ¢'t¢'~ cross section in 5.8 fb~! of 8
TeV data.

¢ = e or p, where ¢ comes either from Z — {7/~ or the
decay of a 7 from Z — 7777,

Measured in both an experimentally accessible fiducial volume
and extrapolated to the total phase space.

CONF Note: ATLAS-CONF-2012-090
(https://cdsweb.cern.ch/record /1460409)

Support Document (restricted to ATLAS):
ATL-COM-PHYS-2012-772
(https://cdsweb.cern.ch/record /1454147)

Thanks to my co-editor Nick Edwards and the SM ZZ analysis

team for their work in getting this result in time to support
the Higgs result at ICHEP.
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Overview

» Motivation

» Analysis Strategy

» ATLAS Detector

» Trigger/Data Acquisition
» Event Reconstruction

» Monte Carlo Simulation

» Event Selection

» Background Estimation

» Systematic Uncertainties
» Kinematic Distributions

» Cross Section Measurement
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Motivation

q— v Z qQ—s

A. Nagarkar

<

Standard Model Production
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N

SM Forbidden

Want to test Standard Model (SM) predictions at new

high-energy frontier!

Precise measurement of SM ZZ production is an important

test of SM electroweak theory.

Plan to eventually set limits on the SM forbidden production

mechanism.

Four-lepton signature is the “golden channel” for many
searches, in which SM ZZ production is the major

background.
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Analysis Strategy

v

Want to measure ZZ production cross section.
» ldentify ZZ candidate events in pp collision data:
1. Detect leptons produced in the hard-scattering process.
2. ldentify opposite-sign, same-flavor lepton pairs.
3. Use them to reconstruct Z-bosons and thereby identify
candidates.
» Estimate background using the data-driven fake-factor
method.

» Relate observed signal yield to production cross section using
Monte Carlo (MC) simulation.

> Fit the production cross section using the maximum likelihood
method.
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ATLAS and the LHC

> A Toroidal LHC Apparatu$S
(ATLAS) detector at Large >
Hadron Collider (LHC).

> Used to study proton-proton
collisions.

» Consists of four main parts:
» Inner Detector (ID)
» Calorimeters
» Muon Spectrometer (MS)
> Magnets
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ATLAS: Inner Detector

» Charged particle tracking
detector.

> Covers region: |n| < 2.5. oam
» Consists of three main parts:

» Silicon pixel detector
» Silicon strip detector

(SCT) 21m
» Straw-tube detector v BPIPN ors criconacr e
(TRT) \ S Burre\'runsi:lo:ﬂr;d:’:ﬁ;::vucker

» Includes diamond detector
(BCM) in forward region, used
to measure luminosity.
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ATLAS: Calorimeter System

> Uses two types of active
material:

» Liquid argon (LAr)
» Scintillating tile

> Covers region: |n| < 4.9.
» Consists of three calorimeters:
» EM (LAr)

» Hadronic (LAr & Tile)
» Forward (LAr)

A. Nagarkar

Seminar



ATLAS: Muon Spectrometer

» Charged particle tracking
detector.

> Covers region: |n] < 2.7.

Thin-gap chambers (T6C)

» Composed of three layers of
precision chambers, made from:
> Drift-tubes (MDT)
> Multi-wire proportional
chambers (CSC)

» Multiple layers adjacent to the
precision layers, used for Borrel foroid
. . \ Nl Resistive-plate
triggering, made from: / chambers (RPC)

End-cap toroid
> Resistive plate chambers Monitored it ubes (MOT)

(RPC)
» Multi-wire proportional
chambers (TGC)

Cathode strip chambers (CSC)
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ATLAS: Magnets

» Two magnets:
» ~ 2 T solenoid:
surrounding the 1D
» ~0.5—1T toroid:
surrounded by the MS
» Solenoid bends charged
particles in ¢
» Toroid bends charged particles
inmn

A. Nagarkar Seminar
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Trigger & Data Acquisition

A. Nagarkar

LHC produces collisions for ATLAS with 50 ns period (20
MHz event rate).

ATLAS uses three-level trigger (L1, L2, and EF) to select only
~500 Hz to record.

At each level, select events by looking for a high-pr (> 24
GeV) lepton (e or p) isolated from other charged particle
activity.

Electrons are required to have deposited less energy in
hadronic calorimeters for L1 trigger.
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Reconstruction

» Inner Detector:

» Fit ID tracks starting with three silicon (pixel+strip) hits and
extending them in helix through solenoid field to find
additional hits before fitting the helix.

» Fit vertices by combining tracks whose extrapolations to the
beam line are close together; define new vertex when a track is
more than 70 away.

» Primary vertex (PV) has highest Z p3.

tracks
» Calorimeters:

» Define EM calorimeter clusters by using fixed window to scan
through calorimeter cells to find those that have significant
energy, defining the barycenter of each deposition as a
precluster, and then defining the EM cluster as a fixed window
around the precluster.

A. Nagarkar Seminar
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Reconstruction (ctd.)

» Muon Spectrometer:
» Fit straight-line track segments in each layer using hits from
precision chambers plus hits from adjacent trigger chambers.
» Fit muon tracks by combining track segements from different
precision layers in path through toroid field.

> Leptons:
» Define electrons by combining ID tracks with EM clusters.
» Define muons by combining ID tracks and MS tracks (or
segments not included in tracks for muons used to reconstruct
Z-bosons).

A. Nagarkar Seminar
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Monte Carlo Simulation

> Want to translate SM cross section into expected event yield.
> Use Monte Carlo generators to simulate pp — ZZ+X— £707 070~ +X
and detector response.
» Simulation of quark annihilation process qg — ZZ — {74~ ¢'*¢'~ done in
six steps:
> Parton distribution function (PDF) - internal structure of
interacting protons: CT10
> Matrix element (ME) - hard scattering interaction: POWHEGBOX
> Underlying event (UE) - remainder of interaction between colliding
protons: PYTHIAS
> Parton shower (PS) - initial/final state radiation (due to both QED
and QCD processes), hadronization, and decays into stable
particles: PYTHIA8
> PS revision - 7-lepton decays and hard (pr > 20 GeV) final state
photon radiation simulated by PYTHIA8 & PHOTOS respectively
» Detector simulation - simulation of the interactions with detector:
GEANT4
> Gluon fusion process gg — ZZ — £747£'7¢'~ (~ 7% of SM expectation)
simulated using ¢G2zz ME+JiMMmy UE+HERWIG PS+TAUOLA 7-lepton

decays.
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Monte Carlo Simulation: Backgrounds

Process PDF ME UE PS

Z +jets CT10 PowHEGBOX PyTHIA8

tt CTiI0 MCQNLO JiMMYy HERWIG
w+z CT10 PowneEcBoOx PYTHIAS

» Various background processes simulated separately with different
simulation programs (per table).
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Event Selection: Electrons

> First selected by standard quality criteria:
» Must be reconstructed in well-understood kinematic region:

> pr > 15 GeV
> |n| < 2.47

» Must be reconstructed in a region without hardware problems.

» Standard set of identification criteria (loose++) applied,
including requirements on:
» Hits on track in various ID subsystems
» Quality of track-cluster matching
» Cluster shower shape (narrowness and penetration depth)

A. Nagarkar Seminar
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Event Selection: Muons

» First selected using a standard track selection:
» Hits in multiple layers of both silicon tracking detectors.
» Limits on sensors traversed without registering hits.
» Successful extension of silicon track into TRT with many hits
and few outliers within TRT acceptance.
» Must be reconstructed in well-understood kinematic region:

> pr > 15 GeV
» n] <25

A. Nagarkar Seminar
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Event Selection: Lepton Isolation & Impact Parameter

» Required to be isolated, nearby (with AR < 0.2 w.r.t. the
lepton ID track) activity required to satisfy:

» Scalar sum momentum of all pr > 1 GeV tracks must be
< 15% of the lepton pr.

» Scalar sum energy of all calorimeter cells must be < 30% of
the lepton pr.

» Required to originate at the PV, impact parameter required to
satisfy:

» dy of muons (electrons) within 3.5 (6) standard deviations of
the unbiased PV?!

> zy within 2 mm of the unbiased PV

1primalry vertex as reconstructed excluding the track whose impact parameter is
being calculated
A. Nagarkar Seminar
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Event Selection

A. Nagarkar

vV v.v Yy

Events only considered if no detector system had any problems.
Events required to have reconstructed PV with > 3 tracks.
Lepton candidates selected in remaining events.

Require exactly 4 leptons that form two opposite-sign, same-flavor
pairs.

> Lepton pairs used to reconstruct Z-boson candidates.

> Resolve ambiguity in pairing for the 4e and 4y channels by

minimizing:

|m(Z1) — m?| + |m(Z2) — m?|
Z candidates required to have invariant mass between 66 and 116
GeV.
= myzz is always > 132 GeV by construction (avoiding overlap with
the Higgs region).
Events only accepted if a lepton from ZZ — ¢T¢~¢'T¢'~ decay
satisfied trigger.
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Background Estimation

A. Nagarkar

Very little SM background production of 4 prompt leptons
from vector boson decays.

Background is from events with some prompt leptons (L)
along with some number of lepton-like jets (J).

J are objects mis-identified as leptons or leptons from
non-prompt sources.

This includes several SM processes that produce multiple

prompt leptons in association with jets (Z + jets, tt, Zv, etc.).

Estimated using the data-driven fake factor method.

Simulated background samples only used to validate yields in
and subtract prompt lepton contamination from the control
regions used in the data-driven background estimation.

Seminar

20



Background Estimation: Fake Factor Method

A. Nagarkar

Define control regions by inverting object selection for 1 and 2
objects.

Measure pass:fail ratio, called the fake factor (FF), of selection
criteria to be inverted in both Z+L and Z+J tagged samples, after
subtracting contamination from W*Z and ZZ.

Scale the yield in the 3 lepton+1 lepton-like jet (LLLJ) control
region by FF to extrapolate into the signal region.

Subtract the contamination from 2 lepton+2 lepton-like jet (LLJJ)
events using the same FF.

Subtract the contamination of both LLLJ and LLJJ regions by ZZ
events using simulation (assign 10% normalization uncertainty).

Therefore, the background is:

B = (N(LLLJ) — N55) x FF — (N(LLJJ) — N557) x FF?
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Background Estimation: Electron Fake Factor

|
|
FAIL B: e
I
electron ID FAIL electron ID only | FAIL both
(loose++) 1 isolation and electron ID
,,,,,,,,,,,,,,,,,, .
|
I
g]:ELECTED Lo
PA! | isolati
c]ccslfun D LEPTONS 3 FAIL isolation only
(loose++) |
I
PASS isolation FAIL isolation

» Electron fake factor is pass:fail ratio of loose++ and isolation
requirements (ﬁ).

» Exclude events that fail both requirements to remain closer to signal
region (region C).

> Region B allows for estimation of mis-identified hadrons.

»> Region D allows for estimation of electrons from non-prompt sources.

» Use difference between measured and simulated fake-factors as the
systematic uncertainty.
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Background Estimation: Muon Fake Factor Definition

A. Nagarkar

I
|
1
|
FAIL B: e
dosig FAIL dOsig only | FAIL both .
I isolation and dOsig
i
,,,,,,,,,,,,,,,,,,
1
SAI:"LFCTFD | D
SLECTE] !
PASS LEPTONS ! FAIL isolation only
dosig i
|
1
PASS isolation FAIL isolation

Muon fake factor is pass:fail ratio of dp-significance and isolation
requirements (ﬁ).

Exclude events that fail both requirements to remain closer to signal
region (region C).

Region B allows for estimation of muons from non-prompt sources (e.g.

large angle b decays).

Region D allows for estimation of mis-identified hadrons (i.e. hadronic
punch-through).

Use difference between measured and simulated fake-factors as the
systematic uncertainty.

Seminar
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Background Estimation: Result

A. Nagarkar

Iltem eteete™ pwtu—ptu ete utp™ o=t~
() Nis X FF T0£0.4+£03  06+0.6£0.4 18+0.9F1.0 | 34F1.2F17
from Nypjpy 8 1 7 16
(=)NpLyy x FF? 0.1£0.140.1 0 02+0.14+0.1 | 03£0.1+0.2
from Ny gy 12 0 8 20
(—)ZZ correction 0340.14£0.1  0540.140.4  1.040.140.6 | 1.940.141.1
Fake estimate, N}3*° | 0.6£0.4+£0.2  0.179G+0.1 061 G¢+0.3 | 13+1.2405

» First uncertainty is statistical, second is systematic.

» Background estimate is smaller for muons than electrons.

» Total background is consistent with 0.

Seminar
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Systematic Uncertainties

» Determined uncertainties in simulation using independent
measurements of various detector efficiencies and
energy/momentum scales/resolutions.

» Reweighted simulated samples based on efficiency measurements
and corrected energy/momentum scales/resolutions.

» Calculated changes in expected yield under variations of each
correction by +10 to get uncertainties in expectation.

» Determined uncertainty in background estimate to be the change in
background yield based on uncertainties in the fake-factor (viz.
statistics and background subtraction).

A. Nagarkar Seminar
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Systematic Uncertainties: Experimental

v

Uncertainties in simulation (estimated using control studies in data).

v

Electrons:

» Energy scale: <0.1%

» Energy resolution: 0.2%

» Reconstruction efficiency: 1.2%
> ldentification efficiency: 1.8%

» Muons:

Momentum scale: <0.1%

ID Momentum resolution: 0.1%
MS Momentum resolution: <0.1%
Reconstruction efficiency: 0.6%

vvyyywy

v

Trigger efficiency: 0.2%

v

Isolation/IP selection efficiency: 0.7% (0.5%) from electrons
(muons)

A. Nagarkar Seminar



Systematic Uncertainties: Theoretical

» Uncertainties in choices of theoretical parameters.
» PDF: 2.0%
» Central values of acceptance and theoretical prediction
calculated using CT10.
» Uncertainties calculated using the 52 CT10 error eigenvectors
and comparison to MSTW2008, calculated using MCFM.
» Renormalization and Factorization Scale: 0.2%
» Central values calculated with both scales fixed at my.
» Uncertainties taken by varying the scales up and down by a
factor of 2, calculated using MCFM.
> Parton Shower Effect: 1.0%

» Evaluate the effect of parton shower on fiducial acceptance.
» Uncertainties taken by comparing acceptance before and after
the PYTHIAS8 parton shower.

A. Nagarkar Seminar
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Kinematic Distributions: Z Mass Distribution
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» Background is omitted from plot.

» Clear enhancement in red box that delimits signal region.
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Kinematic Distributions: Z Mass

Events / 4GeV

A. Nagarkar
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Background in plots is a MC template scaled to the
data-driven background estimate.

Very small background, visible e.g. in the 96-100 GeV bin of
the right (subleading Z) plot.

Good agreement in Z line shape between data and MC.
Leading and subleading Z both have normal line shape, as
expected.
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Kinematic Distributions: Z pt

Events / 20GeV

A. Nagarkar
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Background in plots is a MC template scaled to the
data-driven background estimate.

Good agreement of both Z prt spectra between data and MC.
Distribution of leading Z pt is harder than that of subleading
Z pr, as expected.
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Kinematic Distributions: ZZ System Mass & pr
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» Background in plots is a MC template scaled to the
data-driven background estimate.

» Good agreement in shapes of both distributions.

A. Nagarkar Seminar

31



Observed Yields

Final state ecee LLILLLLL eefui combined (£¢4¢)
Observed 23 22 40 85
Expected Signal 16.5+0.8 209 £ 04 33.2+ 0.9 705 £ 1.7
Background 0.6+0.4+0.2 0.17%%5+0.1 06752+0.3 | 13+1.2+0.5

» Results are consistent with expectation (~ 1.60 upward
fluctuation).
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Cross Section: Fiducial Acceptance

A. Nagarkar

>

The expectation for the event yield in the signal region can be written as a
function of the cross section (0zz), integrated luminosity (£), branching fraction
(Br(ZZ — ¢+~ ¢'+¢'7)), fiducial acceptance (Azz), detection efficiency (Czz),
and ratio of 74X contribution to e and p only contribution to signal (f;) as:

N = L Xxozz X Bl’(ZZ — €+€7f,+£/7) X Azz X Czz X (1 + f-,—) + kag

The fiducial acceptance is defined as the fraction of events in the total phase
space that fall within the fiducial volume:
MC Fiducial Volume
A __ Generated ZZ—4+4—0/T¢/—
ZZ = "“MC Total Phase Space
Generated ZZ— ¢+t ¢—¢/+¢/—

Fiducial volume is defined as the phase-space volume within which candidate
events can be reconstructed:

» Same invariant mass range for Z bosons (viz. 66-116 GeV)

> All leptons required to have pt > 15 GeV

> All leptons required to have |n| < 2.5

> AR(¢,¢") > 0.2 for all pairs of charged leptons
Using MCFM in the et e~ u* ™ channel, calculate that:

Azz = 0.500 £ 0.001 4 0.012

Assume Azz to be the same in the efe~ete™ and ptpu—ptp™ channels by
lepton universality.
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Cross Section: Detection Efficiency

A. Nagarkar

Channel Czz

ete ete” | 0.6140.0140.03
wrp~ptpT | 0.7740.0140.02
e"e " pp~ | 0.68+0.0140.02
e | 0.6940.0140.02

The detection efficiency is calculated from simulation as the ratio of

the expected signal yield to the generated yield in the fiducial

volume:

NMC (Signal Region) x SF 1
NMC (Fiducial Volume) (1)

SF is combined effect of all efficiency corrections used for systematic
uncertainty estimation.

Czz =

» Muons have higher reconstruction efficiency than electrons.

Combined ¢T¢=¢'*¢'~ channel has ~same efficiency as the
ete ptu~ channel.
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Cross Section: Likelihood Function

» Poisson probability to observe N/, _ events given expectation

obs
of Néxp
Ni Nebs . o= N
P( obs'Néxp) = ( eXp)Nlb . (2)
obs®

» For a given Nébs this can be interpreted as a likelihood
function.

» Define measured cross section as value that maximizes
likelihood function.

A. Nagarkar Seminar
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Cross Section: Systematic Uncertainties

» Use Gaussian nuisance parameters for systematic uncertainties, defining set of
variables {xx} constrained in likelihood function as:

i Nlps | o= Nio (027 {4 }) >
3 Nex (o722, {xk}) bs . o™ Vexp\72Z n X
Llozz, i) = 1 ( B )Ni I x ] (e Zk) G
i=1 obs” k=1

Here N

exp is as aforementioned and i represents lepton flavor channel.

Defining variation in expected signal and background yields due to kth
uncertainty source as {S,’(} and {BL} expected signal and background yields as
a function of the {xx} becomes:

M) = 0% [ (-0 o
k=1

Nlikg ({x}) = Ngkg (0) x |:1 + (xk . BL)] . (5)
k=1

> These nuisance-dependent yields sum to the N._ in the likelihood function.

exp

A. Nagarkar Seminar
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Cross Section: Fit

» The likelihood function is maximized using the MINUIT program.
> Systematic uncertainties are determined by shifting each nuisance
until In L shifts by 0.5 and recalculating the cross section.

> Measured cross section both in the fiducial volume (i.e. fitting
07z X Br(ZZ — £~ 0"4'7) x Azz) and the total phase space (i.e.
fitting only ozz) as:

Fiducial Cross Section

Measured 21.013‘2(stat.)t%‘igg(syst.) £ 0.76(lumi.) fb
SM Prediction 16.757%% fb

Total Cross Section
Measured 9.26*_'%)"%68(stat.)f%’é%(syst.) =+ 0.33(lumi.) pb
SM Prediction 7.41%%%% pb

» Measured results in agreement with the SM expectations.
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Conclusion

A. Nagarkar

9 r . NLO QD (MCFM, CT10.0)
[ ATLAS Preliminar
2 I y o L 220m)
N 22 0)
N oL
S e
0 e
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= o 22 Il (66<m <116 Gev) L=5.8 b
ATLAS Data 20:
1= o 2z
E o o2z el)
E Tevatron ({5=1.96 Tev)
r COF 22 Iliw) (on-shell) L=6.0
[ © D022 Iilivv) (60<m <120 GeV) L=8.6 b
| | Ll | |
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Measured cross section of ZZ production in the £T¢=¢'T¢'~ channel
at 8 TeV.

Measured in the 66-116 GeV Z-candidate invariant mass range
(near the Z pole).

Result is consistent with SM prediction (~1.60 upward fluctuation).
Intend to present updated result with full 2012 8 TeV dataset (~20
fb~!) at Moriond.
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A. Nagarkar

Questions?
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Data & MC Samples

» All data and MC used in the W/Z physics ntuple D3PD format
(called NTUP_SMWZ)

» All datasets processed through standard ATLAS reconstruction,
through the centrally managed production system

> Using the standard AllGood_v3 GRL, which requires all data quality
metrics except T-tagging quality to be evaluated as good

» Using data sample as frozen for ICHEP (a total of 5.8 fb™'), except

modified to remove ~ 10 lumiblocks for which nutple production
failed
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